SACCHAROCIN, A NEW AMINOGLYCOSIDE ANTIBIOTIC FERMENTATION, ISOLATION, CHARACTERIZATION AND STRUCTURAL STUDY

MASASHI AWATA, SHUZO SATOI, NAOKI MUTO, MITSUO HAYASHI, HITOSHI SAGAI and HIDEO SAKAKIBARA

Research Laboratories, Toyo Jozo Co., Ltd. Ohito, Shizuoka, 410–23, Japan

(Received for publication January 31, 1983)

A new aminoglycoside antibiotic, saccharocin has been isolated from the fermentation broth of *Saccharopolyspora* sp. AC-3440 (FERM P-6238) by column chromatography on a cation-exchange resin. Saccharocin is active against Gram-positive and Gram-negative bacteria. The structure was elucidated to be 4"-deamino-4"-hydroxyapramycin by ¹³C NMR spectral analysis.

In the course of our screening program for new antibiotics, it has been found that an antimicrobial agent is produced by an actinomycetes strain AC-3440, identified as *Saccharopolyspora* sp. The organism was isolated from a soil sample collected at Ato Town, Yamaguchi Prefecture, Japan. This water-soluble basic antibiotic, named saccharocin, was purified from the broth filtrate by a cation-exchange resin process and chromatography. In this paper, the fermentation, isolation, characterization and structure of saccharocin is reported.

Fermentation and Isolation

Saccharopolyspora sp. AC-3440 was inoculated into 100 ml of a seed medium consisting of 1% dextrin, 1% glucose, 0.5% NZ-Amine type A, 0.3% yeast extract and 0.1% CaCO₃ (pH was adjusted to 7.0 before sterilization) in a 500-ml Erlenmeyer flask and incubated on a rotary shaker at 30°C for 72 hours.

Each 10 ml of the seed-cultured broth thus obtained, was inoculated into each 100 ml of a production medium composed of 0.2% glucose, 4% glycerin, 0.5% peptone, 0.2% starch, 0.5% soybean meal, 0.5% dry yeast, 0.5% NaCl and 0.2% CaCO₈ (pH was adjusted to 7.0 before sterilization) using one hundred 500-ml Erlenmeyer flasks. The fermentation was conducted at 30°C on a rotary shaker. The potency of the culture broth was estimated by a disc plate method against *Bacillus subtilis* PCI 219. After 96 hours incubation a maximum concentration (50 μ g/ml as saccharocin) was obtained.

The fermentation broth (10 liters) containing saccharocin was centrifuged (4,000 rpm, 10 minutes) and the supernatant of the broth (9 liters) was absorbed onto a cation-exchange resin column of Amberlite IRC-50 (NH₄⁺, 1 liter). The column was washed with water (2 liters) and the antibiotic was eluted with 2 M NH₄OH. The active eluate was concentrated to 50 ml *in vacuo*. The aqueous solution was adjusted to pH 7.0 and charged onto a column of Amberlite CG-50 (NH₄⁺, 2×30 cm). After washing with deionized water the column was eluted with aqueous ammonia with a concentration gradient from water (1,000 ml) to 0.15 M (1,000 ml).

The eluate was monitored by silica gel TLC (E. Merck Art. 5735) which was developed with chloroform - methanol - 14% aqueous ammonia (1:2:1) and detected by ninhydrin color reaction. The eluate containing saccharocin was concentrated and lyophilized to give a white powder (170 mg, 620 μ g/mg).

The above crude powder was dissolved in water and charged onto a column of CM-Sephadex C-25 (NH₄⁺, 2×25 cm), followed by elution with 0.05 M aqueous ammonia. By this chromatography, saccharocin was separated from other impurities. The eluate containing only saccharocin was lyophilized to afford a colorless solid (45 mg, 1,000 µg/mg).

Physico-chemical and Biological Properties

Saccharocin is a water-soluble basic white powder. It is stable at pH 2.0, 7.0 and 9.0 at 60° C for 30 minutes. Saccharocin gives positive color reactions to ninhydrin and KMnO₄ tests. Physicochemical properties of saccharocin are listed in Tables 1 and 2. The IR and ¹H NMR spectra of saccharocin are shown in Figs. 1 and 2 respectively.

Saccharocin showed an activity against Gram-positive and Gram-negative bacteria including resistant strains of other aminoglycoside antibiotics, but it was slightly less active than apramycin^{1~3}) (Table 3). Antimicrobial activity of saccharocin was determined in a nutrient agar.

Structural Elucidation

The structural elucidation of saccharocin was performed by comparing the ¹H NMR and ¹³C NMR spectra to those of apramycin^{4~8}, which is an antibiotic structurally very similar to saccharocin.

Appearance	Basic white powder			
Mp	188~190°C			
$[\alpha]^{24}_{ m D}$	$+163.5^{\circ}$ (c 1.0, H ₂ O)			
UV $\lambda_{\max}^{H_2O}$ nm	End absorption			
Elemental analysis	$C_{21}H_{40}N_4O_{12}\cdot 2H_2O$			
(%)	Found	Calcd.		
С	43.35	43.74		
\mathbf{H}	7.46	7.69		
N	9.74	9.72		
IR $\nu_{\rm max}^{\rm KBr}$ cm ⁻¹	3350, 290	0, 1585, 1460, 1380,		
	1340, 114	0, 1090, 990		

Table 1. Physico-chemical properties of saccharocin.

Table 2. Rf values of aminoglycoside antibiotics.

Antibiotics	Α	В
Saccharocin	0.32	0.26
Apramycin	0.32	0.22
Oxyapramycin	0.31	0.16

Solvent systems; A: CHCl₃ - MeOH - 28% NH₄-OH, (2: 3: 2). B: CHCl₃ - MeOH - 14% NH₄OH, (1: 2: 1).

Silica gel TLC; TLC plastic sheets silica gel 60- F_{254} pre-coated (E. Merck Art. 5735).

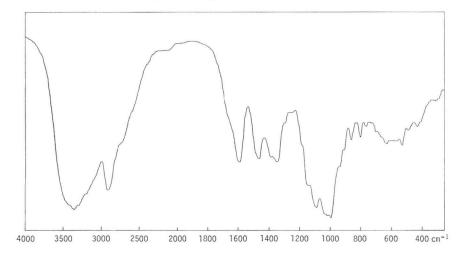


Fig. 2. ¹H NMR spectrum of saccharocin.

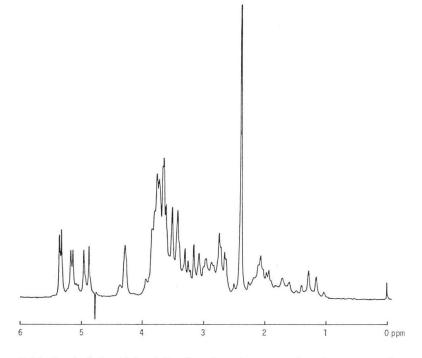


Table 3. Antimicrobial activity of saccharocin, apramycin and oxyapramycin.

Test organism	Saccharocin	Apramycin	Oxyapramycii
Staphylococcus aureus ATCC 6538 P	12.5	3.1	12.5
S. aureus MS27	12.5	1.6	12.5
S. aureus O119	6.3	1.6	6.3
S. epidermidis sp-al-1	6.3	1.6	6.3
Streptococcus pyogenes N.Y.5	25	12.5	50
Bacillus subtilis ATCC 6633	0.8	0.4	1.6
Escherichia coil NIHJ-JC 2	6.3	3.1	6.3
<i>E. coil</i> W3630	1.6	1.6	3.1
E. coil W3630 RGN14	3.1	3.1	6.3
Citrobacter freundii GN346	6.3	3.1	6.3
Klebsiella pneumoniae ATCC 10031	3.1	3.1	6.3
Salmonella enteritidis Gaertner	6.3	3.1	6.3
Shigella sonnei E33	6.3	6.3	12.5
Proteus morganii 0239	6.3	3.1	6.3
P. rettgeri ACR	3.1	1.6	6.3
Enterobacter aerogenes 0655	6.3	3.1	6.3
E. cloacae GN336	6.3	3.1	6.3
Serratia marcescens	6.3	3.1	6.3
Pseudomonas aeruginosa IAMI1095	25	25	50
P. aeruginosa ML4561	25	12.5	25
P. aeruginosa ML4561 Rms 166	12.5	6.3	12.5
P. aeruginosa ML4561 Rms 164-1	25	12.5	50
P. aeruginosa ML4561 RP4	12.5	6.3	12.5
P. aeruginosa 1946	>100	>100	>100
P. aeruginosa 2512	50	25	50
P. putida 1842	25	12.5	25
P. maltophilia 1850	>100	> 100	>100

The protonated molecular ion at m/z 541 of desorption chemical ionization mass spectrum^{7,8)} and elemental analysis for saccharocin agreed with the molecular formula of $C_{21}H_{40}N_4O_{12}$. The ¹H NMR spectrum (Fig. 2) of saccharocin revealed the presence of three anomeric protons, a doublet at 5.34 ppm (1H, J = 3.5 Hz), a doublet at 5.16 ppm (1H, J = 3.5 Hz) and a doublet at 4.92 ppm (1H, J = 8.5 Hz), and one *N*-methyl group as a singlet at 2.38 ppm (3H). The characteristic chemical shifts and coupling patterns of the four protons between 2.3 and 1.0 ppm indicated the presence of a 2-deoxystreptamine moiety.

The ¹³C NMR carbon chemical shifts of saccharocin are shown in Table 4 together with those of apramycin, and the data are very similar.

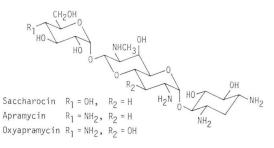
The signal at 53.3 ppm in the ¹³C NMR spectrum (pD 11) of apramycin, which has been assigned to

Carbon	Saccha	Saccharocin		Apramycin*	
	pD 11	pD 1	pD 11	pD 1	lose*
C-1	51.1	50.7	51.1	50.7	
2	36.8	29.1	36.8	29.1	
3	50.2	49.5	50.2	49.5	
4	87.9	78.9	87.9	78.6	
5	76.8	75.9	76.8	75.9	
6	78.5	73.2	78.5	73.2	
1'	101.6	96.0	101.6	96.0	
2′	49.7	48.9	49.7	48.9	
3'	32.9	27.8	32.9	27.8	
4'	67.9	66.8	67.9	66.8	
5'	71.0	70.5	71.0	70.4	
6'	66.4	63.7	66.2	63.5	
7'	62.4	60.3	62.3	60.3	
8'	96.5	93.6	96.5	93.6	
1''	95.5	95.5	95.7	95.3	94.0
2''	71.8	71.2	72.0	71.2	72.9
3''	74.3	73.8	74.3	70.0	73.4
4''	70.9	70.2	53.3	53.2	70.6
5''	73.9	73.2	73.6	68.9	71.9
6''	61.7	61.4	61.8	61.3	61.4
N-Me	33.2	31.4	33.0	31.3	

Table 4. ¹³C NMR chemical shifts.

 $\frac{\text{N-Me}}{\text{1}^{3}\text{C NMR spectra were recorded in } D_{2}\text{O (pD 11)}}$ and pD 1) with dioxane (67.4 ppm) as internal

standard. * Values obtained in our laboratory are in ex-


cellent agreement with the published ones⁴⁾.

the 4" carbon, has been replaced by a resonance in the 70 \sim 75 ppm region in the spectrum of saccharocin. Such a change is consistent with the replacement of NH₂ with OH.

When characteristic signals of the β -aprosamine⁴⁾ portion (C-1 ~ C-8') is subtracted from the ¹³C NMR spectrum of saccharocin, the remaining six resonances accord well with the spectrum of the α -D-glucopyranose.

Consequently, the structure deduced for saccharocin is 4"-deamino-4"-hydroxyapramycin as shown in Fig. 3.

Fig. 3. Structures of saccharocin, apramycin and oxyapramycin.

Acknowledgments

The authors wish to thank to Eli Lilly and Company for the gift of apramycin and oxyapramycin used in this study.

References

- STARK, W. M.; M. M. HOEHN & N G. KNOX: Nebramycin, a new broad spectrum antibiotic complex. I. Detection and biosynthesis. Antimicrob. Agents Chemother, -1967: 314~323, 1968
- HIGGENS, C. E. & R. E. KASTER: Nebramycin, a new broad spectrum antibiotic complex. II. Description of *Streptomyces tenebrarius*. Antimicrob. Agents Chemother. -1967: 324~331, 1968

- 3) THOMPSON, R. G. & E. A. PRESTI: Nebramycin, a new broad spectrum antibiotic complex. III. Isolation and chemical-physical properties. Antimicrob. Agents Chemother. -1967: 332~340, 1968
- WENKERT, E. & E. W. HAGAMAN: Carbon-13 nuclear magnetic resonance spectroscopy of naturally occurring substances. XXIX. Apramycin an application of amine protonation parameters. J. Org. Chem. 41: 701 ~ 703, 1976
- O'CONNOR, S.; L. K. T. LAM, N. D. JONES & M. O. CHANEY: Apramycin, a unique aminocyclitol antibiotic. J. Org. Chem. 41: 2087~2092, 1976
- 6) KOCH, K. F.; K. E. MERKEL, S. C. O'CONNOR, J. I. OCCOLOWITZ, J. W. PASCHAL & D. E. DORMAN: Structures of some of the minor aminoglycoside factors of the nebramycin fermentation. J. Org. Chem. 43: 1430~1434, 1978
- HUNT, D. F.; J. SHABANOWITZ, F. K. BOTZ & D. E. BRENT: Chemical ionization mass spectrometry of salts and thermally labile organics with field desorption emitters as solids probes. Anal. Chem. 49: 1160~1163, 1977
- TAKADA, N.; K. I. HARADA, M. SUZUKI, A. TATEMATSU & T. KUBODERA: Application of emitter chemical ionization mass spectrometry to structural characterization of aminoglycoside antibiotics -2. Org. Mass Spectrum. 17: 247~252, 1982